Lately, I've been digging into vector embeddings, since they're such an important part of the RAG (Retrieval Augmented Generation) pattern that we use in our most popular AI samples. I think that when many developers hear "vector embeddings" these days, they immediately think of dedicated vector databases such as Pinecone, Qdrant, or Chroma.
As it turns out, you can use developers in many existing databases as well, such as the very popular and open-source PostGreSQL database. You just need to install the open-source pgvector extension, and boom, you can store vector-type columns, use four different distance operators to compare vectors, and use two difference indexes to efficiently perform searches on large tables.
For this year's PosetteConf, I put together a talk called "pgvector for Python developers" to explain what vectors are, why they matter, how to use them with pgvector, and how to use pgvector from Python for similarity and searching.
Check out the video on YouTube or below:
You can also follow along the online slides, and try the repositories I used in my demos: pgvector playground and RAG on PostgreSQL. If your goal is simply to deploy pgvector to Azure, also check out Azure PostgreSQL Flexible Server + pgvector.
If you're a Django developer, then you may also be interested in this talk on "Semantic search with Django and pgvector" from Paolo Melchiorre, which you can watch on YouTube or below:
No comments:
Post a Comment